TEMPLATE FOR COURSE SPECIFICATION

HIGHER EDUCATION PERFORMANCE REVIEW: PROGRAMME REVIEW

COURSE SPECIFICATION

This Course Specification provides a concise summary of the main features of the course and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if he/she takes full advantage of the learning opportunities that are provided. It should be cross-referenced with the programme specification.

1. Teaching Institution	Al-Nahrain University
	College of Science/ Department of Mathematics and Computer Applications
3. Course title/code	Real Analysis I/MATH 310
4. Modes of Attendance offered	physical attendance
5. Semester/Year	First Semester/ Year Three
6. Number of hours tuition (total)	60 hours
7. Date of production/revision of this specification	15/10/2022

8. Aims of the Course

- To provide a formal introduction to mathematical analysis by approaching concepts crucial in subsequent analytical topics.
- Emphasis will be given to the concepts of Real numbers, Convergent of sequences of real numbers, Metric Spaces.
- Understanding the need for proof and developing the skills to enable the student to construct for themselves formal proofs.

9. Learning Outcomes, Teaching ,Learning and Assessment Methode

A- Cognitive goals:

- A1. Understand the real number system.
- A2. Understand concepts of convergence and divergence for sequences, subsequences and Cauchy sequences.
- A3. Understand metric spaces, complete metric spaces and compact metric spaces.
- A4. Communicate mathematical argument.

B. The skills goals special to the course.

B1. Apply definitions & theorems presented throughout the course to solve a variety of problems.

B2. Determine by proof whether certain sets, sequences possess said properties.

Teaching and Learning Methods

- Giving Lectures supported by exercises and activities in the classroom
- Daily and Weekly Assessments.
- Giving homework.

Assessment methods

- Participation in the classroom.
- Submit Homework.
- Semester and final Assessments and activities.

C. Affective and value goals

- C1. Developing the student's ability to work on assignments and send them on time.
- C2. Applying concepts by solving different types of exercises.
- C3. Developing the student's ability to argue and discussion.

Teaching and Learning Methods

- Managing the lecture in an applied manner related to the reality of daily life to attract the student to the topic of the lesson.
- Allocate a percentage of grade for assignments. and daily assessments.
- Assigning the student some group activities and assignments.

Assessment methods

- Active Participation in the lesson.
- Commitment to the deadline specified in the submission of exercises.
- The Mid-Semester and End-of-Semester exams express the obligation and skill achievement.
- Exercises and daily duties.

- D. General and rehabilitative transferred skills(other skills relevant to employability and personal development)
 - D1. Emphasizing the importance of linking different concepts.
 - D2. Develop the student's ability to search on the Internet.
 - D3. Develop the student's ability to dialogue and discussion.
 - D4. Develop the student's ability to deal with technical means.

10. Course	10. Course Structure					
Week	Hours	ILOs	Unit/Module or Topic Title	Teaching Method	Assessment Method	
The First	(3)+(1) discussion	Well-ordered sets, complete sets	Real Numbers	Lectures	General questions, discussion and assignments	
The Second	(3)+(1) discussion	Absolute value	Real Numbers	Lectures	General questions, discussion and mid-semester exam	
The Third	(3)+(1) discussion	Definition of the sequence,	Sequences	Lectures	General questions, discussion and assignments	
The Fourth	(3)+(1) discussion	convergent and divergent sequences	Sequences	Lectures	General questions, discussion and daily test	
The Fifth	(3)+(1) discussion	Monotonic sequences	Sequences	Lectures	General questions, discussion and assignments	
The sixth	(3)+(1) discussion	Subsequences	Sequences	Lectures	General questions, discussion and daily test	
The Seventh	(3)+(1) discussion	Cauchy sequences	Sequences	Lectures	General questions, discussion and a mid- semester exam	
The Eighth	(3)+(1) discussion	Definition of metric spaces with examples	Metric Spaces	Lectures	General questions, discussion and daily text	
The Ninth	(3)+(1) discussion	Open and closed sets	Metric Spaces	Lectures	General questions, discussion and assignments	
The tenth	(3)+(1) discussion	Limit points	Metric Spaces	Lectures	General questions, discussion and daily test	
The Eleventh	(3)+(1) discussion	Convergent sequence, Cauchy sequences	Metric Spaces	Lectures	General questions, discussion and assignments	
The Twelfth	(3)+(1) discussion	Complete metric spaces	Metric Spaces	Lectures	General questions, discussion and a mid-semester exam	
The Thirteenth	(3)+(1) discussion	Contraction Mapping	Metric Spaces	Lectures	General questions, discussion and daily test	
The Fourteenth	(3)+(1) discussion	Compact sets	Metric Spaces	Lectures	General questions, discussion and assignments	
The Fifteenth	(3)+(1) discussion	Hiene-Borel Theorem	Metric Spaces	Lectures	General questions, discussion and a mid-semester exam	

11. Infrastructure				
1. Books Required reading:	- Introduction to Mathematical Analysis, Adil G. Naoum, Baghdad University-Iraq.			
2. Main references (sources)	- Introduction to Mathematica Analysis, William F. Trench -USA 2015			
A- Recommended books and references (scientific journals, reports).	- Principle of Mathematical Analysis, Walter Rudin, 2000			
B-Electronic references, Internet sites	https://www.britannica.com/science/analysis- mathematics			
12. The development of the curriculum plan				
Searching and staying up-to-date on the latest books and research on the Mathematical Analysis and their inclusion in the plan.				